Lesson 3.1 • Linear Equations and Arithmetic Sequences

Name \qquad Period \qquad Date \qquad

1. Find an explicit formula for each recursively defined arithmetic sequence.
a. $\begin{aligned} u_{0} & =5 \\ u_{n} & =u_{n-1}+8 \quad \text { where } n \geq 1\end{aligned}$
b. $u_{0}=4.5$
$u_{n}=u_{n-1}+3.2$ where $n \geq 1$
c. $u_{0}=18.25$
$u_{n}=u_{n-1}-4.75$ where $n \geq 1$
d. $u_{0}=0$
$u_{n}=u_{n-1}+100$ where $n \geq 1$
2. Refer to the graph of the sequence.

a. Write a recursive formula for the sequence. What is the common difference? What is the value of u_{0} ?
b. What is the slope of the line through the points? What is the y-intercept?
c. Write the equation of the line that contains these points.
3. For each sequence, find n so that u_{n} has the specified value.
a. $u_{n}=4+5 n$
$u_{n}=79$
b. $u_{0}=88$
$u_{n}=u_{n-1}-7.5$ where $n \geq 1$
$u_{n}=-84.5$
4. Find the slope of each line.
a. $y=5+3 x$
b. $y=10-x$
c. $y=0.6 x-0.8$
d. $y=\frac{2}{5}-\frac{4}{5} x$
e. $y=12.5$
f. $y=7+x$
5. Write an equation in the form $y=a+b x$ for each line.
a. The line that passes through the points of an arithmetic sequence with $u_{0}=11$ and a common difference of 9
b. The line that passes through the points of an arithmetic sequence with $u_{0}=-7.5$ and a common difference of -12.5
\qquad
\qquad Date \qquad
6. Find the slope of the line containing each pair of points.
a. $(2,6)$ and $(4,12)$
b. $(-5,2)$ and $(2,-5)$
c. $(0,7)$ and $(5,0)$
d. $\left(\frac{1}{3}, \frac{2}{3}\right)$ and $\left(\frac{5}{6},-\frac{1}{6}\right)$
e. $(8,12)$ and $(-3,12)$
f. $(-9,8)$ and $(-9,-8)$
7. Find the slope of each line.
a. $y=4 x-5$
b. $y=1.6-2.5 x$
c. $7 x-6 y=42$
d. $3 x+5 y=15$
e. $y=-4(x-7)+12$
f. $y=14.5-0.3(x-30)$
8. Solve.
a. $y=6-2 x$ for y if $x=-4$.
b. $y=32+5 x$ for x if $y=8$.
c. $y=a-0.4 x$ for a if $x=600$ and $y=150$.
d. $y=375+b x$ for b if $x=20$ and $y=500$.
9. Find the equations of both lines in each graph.
a.

b.

10. Consider the equations and graphs of Exercise 4.
a. What do the equations in 4 a have in common? What do you notice about their graphs?
b. What do the equations in 4 b have in common? What do you notice about their graphs?

Lesson 3.3 • Fitting a Line to Data

Name \qquad
\qquad Date \qquad

1. Write an equation in point-slope form for each line.
a.

b.

2. Write an equation in point-slope form for each line.
a. Slope -3 and passing through $(2,5)$
b. Slope 0.75 and passing through $(-4,10)$
c. Parallel to $y=5+3 x$ and passing through $(-4,2)$
d. Parallel to $y=7-4 x$ and passing through $(2,-5)$
3. Solve.
a. $u_{n}=8+6(n-2)$ for u_{n} if $n=10$.
b. $d=9-4(t+5)$ for d if $t=20$.
c. $y=500-20(x-5)$ for x if $y=240$.
d. $u_{n}=-3.5+0.4(n-12)$ for n if $u_{n}=2.9$.
4. For each graph, use your ruler to draw a line of fit. Explain how your line satisfies the guidelines on page 128 of your book.
a.

b.

\qquad Period \qquad Date \qquad
5. How should you divide the following sets into three groups for the median-median line?
a. Set of 33 elements
b. Set of 44 elements
c. Set of 64 elements
d. Set of 57 elements
6. Find the point with coordinates (median x, median y) for each group of points.
a. $(3,4),(5,8),(11,9),(13,10)$
b. $(0,3),(2,6),(3,4),(5,1),(7,5)$
c. $(14,20),(11,11),(17,13),(15,19),(16,22),(20,18)$
d. $(2.5,5.0),(4.1,3.8),(1.6,7.5),(5.9,2.6)$
7. Find an equation in point-slope form for the line passing through each pair of points.
a. $(5,8)$ and $(8,2)$
b. $(-1,6)$ and $(9,-4)$
c. $(20,-14)$ and $(-30,16)$
d. $(44.2,-22.8)$ and $(25.2,34.2)$
8. Find an equation for each line described. Write your answer in the same form as the given line or lines.
a. Line one-third of the way from $y=2 x+6$ to $y=2 x+15$
b. Line one-third of the way from $y=5-x$ to $y=11-x$
c. Line one-third of the way from $y=16.4+3.8 x$ to the point $(9,50)$
d. Line one-third of the way from $y=0.8 x+12.6$ to the point $(9,48)$

Name \qquad Period \qquad Date \qquad

1. Determine whether the given point lies above or below the given line.
a. $y=4 x+5 ;(1,8)$
b. $y=-2 x+6 ;(3,1)$
c. $y=3.6 x-18.8 ;(10,16.9)$
d. $y=-0.1 x+4.4 ;(5,4.2)$
2. Each of the equations below represents the median-median line for a set of data. The table gives the x-value and the residual for each data point. Find the y-value for each data point.
a. $\hat{y}=4 x-5$

x-value	0	1	3	10
Residual	1	-1	2	-3

3. This table gives the number of students enrolled in U.S. public schools for various years.
a. Find the median-median line for the data.

Round all answers to one decimal place. Does the y-intercept make sense for the data?
b. Calculate the residuals.
c. Calculate the root mean square error for the median-median line.
d. What is the real-world meaning of the root mean square error?
e. The World Almanac predicts that the public school enrollment in the 2009-10 school year will be 47,109 students. Use your medianmedian line to predict enrollment in 2009-10 and calculate the residual of the Almanac's b. $\hat{y}=3.2 x+6.7$

x-value	3	5	10	22
Residual	-1.3	2.3	0.3	-3.1

4. Each list of numbers below represents the residuals for a data set. Find the root mean square error for each set of residuals. (Round your answers to the nearest hundredth.)
a. $3,-2,1,0,-3,-2,4$
b. $5,-3,-4,6,1,2,-2$

Lesson 3.6 • Linear Systems

Name \qquad Period \qquad Date \qquad

1. Identify the point of intersection listed below each system of linear equations that is the solution of that system.
a. $\left\{\begin{array}{l}2 x+5 y=10 \\ x-3 y=-6\end{array}\right.$
b. $\left\{\begin{array}{l}4 x+3 y=4 \\ 3 x-2 y=-14\end{array}\right.$
c. $\left\{\begin{array}{l}6 x-5 y=0 \\ x-y=-1\end{array}\right.$
$(5,0) ;(0,2) ;(3,1)$

$$
(-2,4) ;\left(0, \frac{4}{3}\right) ;(0,7)
$$

$$
(0,0) ;(-5,-6) ;(5,6)
$$

2. Write a system of linear equations that has each ordered pair as its solution.
a. $(5,4)$
b. $(-3,8)$
c. $(3,10.5)$
3. Write an equation for each line described.
a. Perpendicular to $y=2 x-3$ and passing through the point $(5,-4)$
b. Perpendicular to $y=1.5+0.25 x$ and passing through the point $(5,-2)$
4. Solve.
a. $8-3(x-2)=5+6 x$
b. $120-5.5(x-45)=75-x$
c. $3.8 t-16.2=12+2.8(t+3)$
d. $7.5-0.8 t=18.5+3.2(t-4)$
5. Use substitution to find the point (x, y) where each pair of lines intersect. Use a graph or table to verify your answer.
a. $\left\{\begin{array}{l}y=3-2 x \\ y=5+2 x\end{array}\right.$
b. $\left\{\begin{array}{l}y=-2.5 x+8 \\ y=1.5 x-4\end{array}\right.$
c. $\left\{\begin{array}{l}y=0.45 x-2 \\ y=-0.45 x+2\end{array}\right.$
d. $\left\{\begin{array}{l}y=9+4(x-3) \\ y=15-2 x\end{array}\right.$
e. $\left\{\begin{array}{l}y=-2 x+7.5 \\ y=3 x-15\end{array}\right.$
f. $\left\{\begin{array}{l}y=4.8-2(x+3.1) \\ y=13.6+3 x\end{array}\right.$

Name \qquad Period \qquad Date \qquad

1. Solve for the given variable.
a. $r-s=20$, for s
b. $2 w+z=8$, for w
c. $3 x+4 y=12$, for y
d. $5 x-8 y=-10$, for x
e. $0.2 m-0.5 n=1$, for n
f. $250 x+400 y=-50$, for y
2. Find a multiplier for the first equation so that the sum of the resulting new equation and the second original equation will eliminate y.
(Do not solve the system.)
a. $\left\{\begin{array}{l}4 x-5 y=2 \\ x+10 y=-2\end{array}\right.$
b. $\left\{\begin{array}{l}5.5 x+2.5 y=4 \\ 2.0 x+7.5 y=-1\end{array}\right.$
c. $\left\{\begin{array}{l}1.6 x-3.2 y=0 \\ 5 x+16 y=8\end{array}\right.$
3. Graph each system and find an approximate solution. Then choose a method and find the exact solution. List each solution as an ordered pair.
a. $\left\{\begin{array}{l}x+y=1 \\ 2 x-2 y=1\end{array}\right.$
b. $\left\{\begin{array}{l}3 x-2 y=6 \\ -2 x+3 y=0\end{array}\right.$
c. $\left\{\begin{array}{l}5 x+4 y=16 \\ 4 x-3 y=12\end{array}\right.$
4. Solve each system of equations.
a. $\left\{\begin{array}{l}3 x-4 y=8 \\ y=x-1\end{array}\right.$
b. $\left\{\begin{array}{l}2 x+3 y=0 \\ 3 x+2 y=-10\end{array}\right.$
c. $\left\{\begin{array}{l}5 x-8 y=8 \\ -10 x+4 y=-7\end{array}\right.$
d. $\left\{\begin{array}{l}0.5 x+1.5 y=5 \\ x+y=-10\end{array}\right.$
e. $\left\{\begin{array}{l}-4 x+15 y=8 \\ 6 x-5 y=-5\end{array}\right.$
f. $\left\{\begin{array}{l}5 x-9 y=8.5 \\ 3 x+7 y=-1.1\end{array}\right.$
g. $\left\{\begin{array}{l}0.3 x+0.8 y=3.6 \\ 0.7 x+0.3 y=-5.7\end{array}\right.$
h. $\left\{\begin{array}{l}0.9 x-0.4 y=21 \\ 0.2 x+0.6 y=-16\end{array}\right.$
i. $\left\{\begin{array}{l}0.6 x+0.5 y=6.4 \\ 1.4 x-0.7 y=-44.8\end{array}\right.$
